Ask Lemmy
A Fediverse community for open-ended, thought provoking questions
Rules: (interactive)
1) Be nice and; have fun
Doxxing, trolling, sealioning, racism, and toxicity are not welcomed in AskLemmy. Remember what your mother said: if you can't say something nice, don't say anything at all. In addition, the site-wide Lemmy.world terms of service also apply here. Please familiarize yourself with them
2) All posts must end with a '?'
This is sort of like Jeopardy. Please phrase all post titles in the form of a proper question ending with ?
3) No spam
Please do not flood the community with nonsense. Actual suspected spammers will be banned on site. No astroturfing.
4) NSFW is okay, within reason
Just remember to tag posts with either a content warning or a [NSFW] tag. Overtly sexual posts are not allowed, please direct them to either !asklemmyafterdark@lemmy.world or !asklemmynsfw@lemmynsfw.com.
NSFW comments should be restricted to posts tagged [NSFW].
5) This is not a support community.
It is not a place for 'how do I?', type questions.
If you have any questions regarding the site itself or would like to report a community, please direct them to Lemmy.world Support or email info@lemmy.world. For other questions check our partnered communities list, or use the search function.
6) No US Politics.
Please don't post about current US Politics. If you need to do this, try !politicaldiscussion@lemmy.world or !askusa@discuss.online
Reminder: The terms of service apply here too.
Partnered Communities:
Logo design credit goes to: tubbadu
view the rest of the comments
A complex number is just two real numbers stitched together. It's used in many areas, such as the Fourier transform which is common in computer science is often represented with complex numbers because it deals with waves and waves are two-dimensional, and so rather than needing two different equations you can represent it with a single equation where the two-dimensional behavior occurs on the complex-plane.
In principle you can always just split a complex number into two real numbers and carry on the calculation that way. In fact, if we couldn't, then no one would use complex numbers, because computers can't process imaginary numbers directly. Every computer program that deals with complex numbers, behind the scenes, is decomposing it into two real-valued floating point numbers.
That's not quite accurate because the two numbers have a relationship with each other. i^2 = - 1, so any time you square a complex number or multiply two complex numbers, some of the value jumps from one dimension to the other.
It's like a vector, where sure, certain operations can be treated as if the dimensions of the vector are distinct, like a translation or scale. But other operations can have one dimension affecting the other, like rotation.
uh... broski... you do realize a vector of two real numbers can be rotated... right? Please give me a single example for a supposed impossible operation to do on a vector of two real numbers that you can do on complex numbers. I can just define v² where v is a vector (a,b) as (a,b)²=(a²-b²,2ab). Okay, now I've succeeded in reproducing your supposedly mathematically impossible operation. Give me another one.
I don't think this is really an accurate way of thinking about them. Yes, they can be mapped to a 2d plane, so you can represent them with their two real-numbered coordinates along the real and imaginary axes, but certain operations with them (eg. multiplication) can be done easily with complex numbers but are not obvious how to carry out with just grid points. (3,4) * (5,6) isn't well-defined, but (3+4i) * (5+6i) is.
I am having genuine difficulty imagining in your head how you think you made a point here. It seems you're claiming that given if two vectors have the same symbols between them, they should have identical output, such as (a,b) * (c,d) should have the same mathematical definition as (a+bi) * (c+di), or complex numbers are not reducible to real numbers.
You realize mathematical symbols are just conventions, right? They were not handed down to us from Zeus almighty. They are entirely human creations. I can happily define the meaning of (a,b) * (c,d) to be (ac-bd,ad+bc) and now it is mathematically well-defined and gives identical results.
Right, but you need to specify that additional definition. Imaginary numbers are useful because they come pre-loaded with all those additional definitions about how to handle operations that use them.
I also find your hostile confusion unwarranted, given two other commenters have pointed out the same flaw in your argument that I have.
Because your arguments are just bizarre. Imaginary numbers do not have a priori definitions. Humans have to define imaginary number and define the mathematical operations on them. There is no "hostile confusion" or "flaw," there is you making the equivalent of flat-earth arguments but for mathematics. You keep claiming things that are objectively false and so obviously false it is bizarre how anyone could even make such a claim. I do not even know how to approach it, how on earth do you come to believe that complex numbers have a priori definitions and they aren't just humans defining them like any other mathematical operation? There are no pre-given definitions for complex numbers, their properties are all explicitly defined by human beings, and you can also define the properties on vectors. You at first claim that supposedly you can only do certain operations on complex numbers that you cannot on vectors, I point out this is obviously false and you can't give a single counter-example, so now you switch to claiming somehow the operations on complex numbers are all "pre-given." Makes zero sense. You have not pointed out a "flaw," you just ramble and declare victory, throwing personal attacks calling me "confused" like this is some sort of competition or something when you have not even made a single coherent point. Attacking me and downvoting all my posts isn't going to somehow going to prove that you cannot decompose any complex-valued operations into real numbers, nor is it going to prove that complex numbers somehow don't have to have their properties and operations on them postulated just like real numbers.
I'm being combative because I don't get how you don't understand our argument, and because I view claims like "You keep claiming things that are objectively false" to be hostile when they stem from a misunderstanding rather than a fault on my part.
Let me restate my main point: complex numbers can be defined as vectors with the necessary rules to define various operations, such as multiplication over them and how they relate to sqrt(-1). Those additional rules are just as important to their definition as their appearance as two real-numbered values is. Both vectors and complex numbers are defined by humans, but we have chosen to give them separate definitions, because each definition includes the rules defining these operations and relationships, and they are different between the two types of mathematical object.
And, for the record, I downvoted your posts that were hostile (not all of them) and responded in kind. It's a separate effort than trying to prove my point here.