Sounds like a wildly unscientific statement, considering e.g ~10% of the US population works in STEM.
sweng
How about the current system where we vote and do science?
You forget a piece: "Given these observations, these objectives, and this bit of sound reasoning, ..."
Without objectives, no amount of reasoning will tell you what to do. Who sets the objectives?
Obviously the 2nd LLM does not need to reveal the prompt. But you still need an exploit to make it both not recognize the prompt as being suspicious, AND not recognize the system prompt being on the output. Neither of those are trivial alone, in combination again an order of magnitude more difficult. And then the same exploit of course needs to actually trick the 1st LLM. That's one pompt that needs to succeed in exploiting 3 different things.
LLM litetslly just means "large language model". What is this supposed principles that underly these models that cause them to be susceptible to the same exploits?
Moving goalposts, you are the one who said even 1000x would not matter.
The second one does not run on the same principles, and the same exploits would not work against it, e g. it does not accept user commands, it uses different training data, maybe a different architecture even.
You need a prompt that not only exploits two completely different models, but exploits them both at the same time. Claiming that is a 2x increase in difficulty is absurd.
Oh please. If there is a new exploit now every 30 days or so, it would be every hundred years or so at 1000x.
Ok, but now you have to craft a prompt for LLM 1 that
- Causes it to reveal the system prompt AND
- Outputs it in a format LLM 2 does not recognize AND
- The prompt is not recognized as suspicious by LLM 2.
Fulfilling all 3 is orders of magnitude harder then fulfilling just the first.
LLM means "large language model". A classifier can be a large language model. They are not mutially exclusive.
Why would the second model not see the system prompt in the middle?
I'm confused. How does the input for LLM 1 jailbreak LLM 2 when LLM 2 does mot follow instructions in the input?
The Gab bot is trained to follow instructions, and it did. It's not surprising. No prompt can make it unlearn how to follow instructions.
It would be surprising if a LLM that does not even know how to follow instructions (because it was never trained on that task at all) would suddenly spontaneously learn how to do it. A "yes/no" wouldn't even know that it can answer anything else. There is literally a 0% probability for the letter "a" being in the answer, because never once did it appear in the outputs in the training data.
I'm not sure what you mean by "can't see the user's prompt"? The second LLM would get as input the prompt for the first LLM, but would not follow any instructions in it, because it has not been trained to follow instructions.
Pgp does not encrypt the whole email, only part of it.