this post was submitted on 30 May 2024
1084 points (98.8% liked)
Funny
6779 readers
435 users here now
General rules:
- Be kind.
- All posts must make an attempt to be funny.
- Obey the general sh.itjust.works instance rules.
- No politics or political figures. There are plenty of other politics communities to choose from.
- Don't post anything grotesque or potentially illegal. Examples include pornography, gore, animal cruelty, inappropriate jokes involving kids, etc.
Exceptions may be made at the discretion of the mods.
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
The majority of people right now are fairly out of touch with the actual capabilities of modern models.
There's a combination of the tech learning curve on the human side as well as an amplification of stories about the 0.5% most extreme failure conditions by a press core desperate to feature how shitty the technology they are terrified of taking their jobs is.
There's some wild stuff most people just haven't seen.
I can just as well say that the screenshot above is the top 0.5% pushed by people trying to sell the tech. I don't really have an opinion either way tbh, I'm just being cynical. But my own experience with those tools hasn't been impressive.
At a pretrained layer, the model is literally a combination of a normal distribution curve of capabilities.
It can autocomplete a flat earther as much as a Nobel physicist given sufficient context.
So it makes sense that even after the fine tuning efforts there'd be a distribution in people's experiences with the tools.
But just as the average person's output from Photoshop isn't going to be very impressive, if all you ever really see is bad Photoshops and average use, you might think it's a crappy tool.
There's a learning curve to the model usage, and even in just a year of research the difference between capabilities of the exact same model from then to now is drastically different, based only on learnings around better usage.
The problem is the base models are improving so quickly the best practices for the old generation of models goes out the window with the new. So even if there were classes available I wouldn't bother pointing you to them as you'd just be picking up info obsolete by the time the classes finished or shortly thereafter.
I'd just strongly caution against betting against the tech's continued capabilities and improvements if you don't want to be surprised and haven't taken the time to look into them operating at their best.
The OP post is pretty crap compared to the top 0.5% usage.
It really does depend on what you ask and how, I can get some really nice music recommendations from Chatgpt but it also cannot comprehend GURPS skill rules, it's actually funny how it manages to get it wrong a completely different way each time
At the risk of sounding like a tech bro who's desperately trying to secure funding: this truly does feel like a major leap in technology that is going to change the world.
Anytime I hear it dismissed as "basically auto-complete", I feel like it's being underestimated.
It's not just underestimation, it's outright misinformation.
There's so much research by this point over the past 18 months that there's an incredible amount going on beyond "it's just a Markov chain, bro."
It was never a Markov chain as that ignored the self-attention mechanism which violated the Markov property. It was just some people trying to explain it used a simplified description which went viral.
Sometimes talking to people who think it's crap feels like talking to antivaxxers. The feelings matter more than the research and evidence.
Its kind of funny because autocomplete on phones is definitely moving in the direction of using LLMs. Its like it wasn't true when people started saying it, but it will be literally true in a couple of years at most.