this post was submitted on 12 Jun 2024
8 points (100.0% liked)

LocalLLaMA

3306 readers
1 users here now

Welcome to LocalLLaMA! Here we discuss running and developing machine learning models at home. Lets explore cutting edge open source neural network technology together.

Get support from the community! Ask questions, share prompts, discuss benchmarks, get hyped at the latest and greatest model releases! Enjoy talking about our awesome hobby.

As ambassadors of the self-hosting machine learning community, we strive to support each other and share our enthusiasm in a positive constructive way.

Rules:

Rule 1 - No harassment or personal character attacks of community members. I.E no namecalling, no generalizing entire groups of people that make up our community, no baseless personal insults.

Rule 2 - No comparing artificial intelligence/machine learning models to cryptocurrency. I.E no comparing the usefulness of models to that of NFTs, no comparing the resource usage required to train a model is anything close to maintaining a blockchain/ mining for crypto, no implying its just a fad/bubble that will leave people with nothing of value when it burst.

Rule 3 - No comparing artificial intelligence/machine learning to simple text prediction algorithms. I.E statements such as "llms are basically just simple text predictions like what your phone keyboard autocorrect uses, and they're still using the same algorithms since <over 10 years ago>.

Rule 4 - No implying that models are devoid of purpose or potential for enriching peoples lives.

founded 2 years ago
MODERATORS
 

Hello! I am looking for some expertise from you. I have a hobby project where Phi-3-vision fits perfectly. However, the PyTorch version is a little too big for my 8GB video card. I tried looking for a quantized model, but all I found is 4-bit. Unfortunately, this model works too poorly for me. So, for the first time, I came across the task of quantizing a model myself. I found some guides for Phi-3V quantization for ONNX. However, the only options are fp32(?), fp16, int4. Then, I found a nice tool for AutoGPTQ but couldn't make it work for the job yet. Does anybody know why there is no int8/int6 quantization for Phi-3-vision? Also, has anybody used AutoGPTQ for quantization of vision models?

top 1 comments
sorted by: hot top controversial new old
[–] rufus@discuss.tchncs.de 3 points 1 year ago* (last edited 1 year ago)

I think most people use something like exllamav2 or vllm or use GGUF to do inference and it seems neither of those projects have properly implemented multimodality or this specific model architecture, yet.

You might just be at the forefront of things and there isn't yet any beaten path you could follow.

The easiest thing you could do is just use something that already exists, be it 4bit models, wait a few weeks and then upgrade. And I mean you can also always quantize models yourself and set the parameters however you like, if you have some inference framework that supports your model including the adapters for vision and has the quantization levels you're interested in...