this post was submitted on 24 Aug 2024
34 points (63.1% liked)
Technology
59201 readers
2829 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Exactly. If we give an LLM with no training data a large group of specimens, will it organize them into logical groups? Does it even understand the concept of organizing things into discrete groups?
That's something that's largely encoded into our brain structures due to millennia of evolution (or creation, take your pick) where such organization is advantageous. The LLM would only do it if we indicated that such organization is advantageous, and even then would only do it if we gave it a desired output. An LLM will only reflect the priorities of its creator, or at least the priorities baked in to the training data. It's not going to suggest that something else entirely be considered, because it only considers things from the lenses we give it.
Humans will question assumptions, will organize things without being prompted, and will generate our own priorities. I firmly believe an LLM cannot, and thus cannot be considered self-deterministic, and thus not sentient. All it can do is optimize for the priorities we give it, and while it may do that in surprising ways, that doesn't mean there's "thinking" going on, just that it's a complex system we don't fully understand (even if we created it). Maybe human brains work in a similar way (i.e. completely deterministic given a specific genome and "training data"), but we know LLMs work that way, so until we prove that humans work similarly, we cannot equate them. It's kind of like the P = NP question, we know LLMs are deterministic, we don't know if humans are. So the question isn't "can LLMs think" (we know they can't), but "can humans think."