this post was submitted on 13 May 2024
25 points (96.3% liked)

3DPrinting

15561 readers
175 users here now

3DPrinting is a place where makers of all skill levels and walks of life can learn about and discuss 3D printing and development of 3D printed parts and devices.

The r/functionalprint community is now located at: !functionalprint@kbin.social or !functionalprint@fedia.io

There are CAD communities available at: !cad@lemmy.world or !freecad@lemmy.ml

Rules

If you need an easy way to host pictures, https://catbox.moe may be an option. Be ethical about what you post and donate if you are able or use this a lot. It is just an individual hosting content, not a company. The image embedding syntax for Lemmy is ![](URL)

Moderation policy: Light, mostly invisible

founded 1 year ago
MODERATORS
 

Hi guys. Please check my previous post for any background questions, I don't have it in me to go over everything again.

Long story short, I was having issues with clogging that were being caused by my hotend not reaching the reported temp. After a few days of troubleshooting and diagnosing the motherboard and Klipper settings, I gave up and decided the motherboard was faulty (even though I could not perform any tests to determine in) and bought an SKR mini. I got that all set up, and the printer has been working flawlessly since then.

Until now.

Same exact problem; one print goes perfectly fine, next print, failing to extrude by the 4th layer. I removed the clog, restarted the print, now can't even extrude the priming line. Fearing the worst, I disassemble the hotend, try hand feeding filament, and once again I am unable to push more than a few centimeters through before it gets clogged up. A probe thermometer reads ~160C while Klipper reports 200C.

What could possibly be happening here? The board is an aftermarket replacement from a completely different company, so I doubt it's a recurring manufacturer defect, but I have no idea what else can be causing this.

At this point I've spent so much time and money trying to fix this printer that I could almost buy a new one, but at this point I'm not convinced even that would solve the problem.

you are viewing a single comment's thread
view the rest of the comments
[–] papalonian@lemmy.world 1 points 6 months ago (2 children)

I'd be really surprised if slightly dodgy power would damage 2 unrelated boards in a super specific way and damage nothing else.

This is my thinking as well, but I've got zero other ideas.

I've already cut the wires on my heat cart and thermistors, so swapping those parts around is easy.

I've seen printers with a PCB on the hotend, but I'm not sure I understand what it is that the PCB does; is it simply a port hub between the main board and the hotend to make parts easier to swap out, or does it do any actual "thinking"? If it's the former, I think I've more or less accomplished this with the connectors. If it's that latter, I have no idea how I would go about configuring that to work with the SKR, but it would probably solve my problem by moving the "temp calculation" job off of the main board. It would at least tell me for certain if the board is what's reporting the incorrect temp.

[–] bitfucker@programming.dev 1 points 6 months ago

The PCB doesn't do anything other than a compacted connector between components. Especially the surface mount component. Also, some devices can be more sensitive than others making it more prone to breaking during mishandling. If something on the pcb breaks (highly unlikely), then you can just solder using jumper wire (to some degree, high speed signals cannot be treated this way). However, if the component on the PCB is the one that breaks, then you can just replace that component with some careful solder works. But yes, sometimes replacing it will be easier than repairing

[–] morbidcactus@lemmy.ca 1 points 5 months ago

I use a version of Hartk's Stealthburner PCB on my voron and cludged an afterburner tool head onto my franken mk3s. They're both breakout PCBs, the stealthburner one to my knowledge is passthrough, afterburner one has a thermistor and led on it for chamber temps and a hotend activity led. Totally optional and what you've done already is probably the more frequent things I'd change anyhow. There are fancier tool head boards, they're effectively their own MCUs afaik that communicate via canbus, with those ones you're running very few wires, something I'm thinking about but haven't done yet

For me, they reduced the amount of wiring I needed to run to the hotend and make it super easy to swap components, as I said, I've damaged things unintentionally before (I'll say ADHD is contributing to that) so it's really handy. Keeps the wiring neater as well, or at least gives you a place to manage them.