this post was submitted on 07 Aug 2023
89 points (97.8% liked)
Europe
8484 readers
1 users here now
News/Interesting Stories/Beautiful Pictures from Europe ๐ช๐บ
(Current banner: Thunder mountain, Germany, ๐ฉ๐ช ) Feel free to post submissions for banner pictures
Rules
(This list is obviously incomplete, but it will get expanded when necessary)
- Be nice to each other (e.g. No direct insults against each other);
- No racism, antisemitism, dehumanisation of minorities or glorification of National Socialism allowed;
- No posts linking to mis-information funded by foreign states or billionaires.
Also check out !yurop@lemm.ee
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
@matthewtoad43 @BrianSmith950 @Ardubal @Pampa @AlexisFR @Wirrvogel @Sodis
In terms of filling in the gaps in #energy production we could do some fun maths. Imagine massive #renewable overcapacity and see what storage we need.
Just move the yellow and green lines up x3. This is a typical summer week but we could also look at winter months (less #solar more #wind?)
@MattMastodon @BrianSmith950 @Ardubal @Pampa @AlexisFR @Wirrvogel @Sodis Well, California has done a lot of the work for you. Have a look at their charts, including multiple GW of battery storage.
Also the study I posted about Australia. There was another one but I lost it on the other place. You can get *most* of the way with a few *hours* storage, not weeks.
@matthewtoad43 @MattMastodon @BrianSmith950 @Ardubal @Pampa @AlexisFR @Wirrvogel @Sodis
Might be this one. (Haven't found him directly on Mastodon yet)
Shows how we can get by in Australia with just 5 hours storage. Uses real time data.
https://bird.makeup/users/davidosmond8/statuses/1686581904823484416
@MattMastodon @BrianSmith950 @Ardubal @Pampa @AlexisFR @Wirrvogel @Sodis What that means is if you're going the long term storage / hydrogen or iron-air batteries route, the inefficiency doesn't matter (but the capital cost does).
On the other hand if you try to reach 100% with minimal demand side interventions even in emergencies, you end up building way more (~3x) renewables than you ideally need. Which has a cost - rare earths etc.
But there are plenty of options for managing intermittency. All of them have problems or costs though. Which is one reason I'm not strongly opposed to nuclear, for instance, but nor am I terribly enthusiastic about its ability to deliver quickly enough.
@MattMastodon @BrianSmith950 @Ardubal @Pampa @AlexisFR @Wirrvogel @Sodis Also, which country is that? Look at e.g. today's UK chart - wind was dominant until 6:30PM. Sadly this service does not include batteries because there's no data on *charging* them.
https://grid.iamkate.com/
@matthewtoad43 @BrianSmith950 @Ardubal @Pampa @AlexisFR @Wirrvogel @Sodis
You got there too quick for me to add this
Here in Europe (yes the UK is still in Europe, brexiteers can't change geography)
Here in Europe we can help each other out and sice we have such varied #energy systems, Norway with it's #hydro France #nuclear the UK can easily pick up a few % or lend a few % when needed.
@MattMastodon @BrianSmith950 @Ardubal @Pampa @AlexisFR @Wirrvogel @Sodis Yup, lots of interconnectors being built/planned in theory, but they seem to take ages. We need more in any case.
@MattMastodon @BrianSmith950 @Ardubal @Pampa @AlexisFR @Wirrvogel @Sodis Africa too - see the Xlinks project: 10GW Saharan solar + battery + 3.6GW interconnector -> UK baseload equivalent to a nuclear power station.
Although that is now dependent on a 20GWh lithium battery, which somewhat stretches credulity. Not to mention the usual questions around appropriation of land and water etc.
https://xlinks.co/morocco-uk-power-project/
@MattMastodon @BrianSmith950 @Ardubal @Pampa @AlexisFR @Wirrvogel @Sodis Maybe. It depends where the cars are plugged in at the time. The charging infrastructure to use them all at once would be pretty serious/expensive, especially if it has to support fast charging in e.g. a (potentially systemic) personal emergency as well as efficient slow charging with V2G.
And the transition to EVs is going to stall pretty soon, because a large proportion of people people do not have driveways or garages, and public chargers are expensive and slow.
Also, I'm hoping the peak number of EVs will be somewhat less than the current total number of cars - we get to sustainability faster with fewer cars.
V2G is interesting though, I agree we should make use of that resource.
@MattMastodon @BrianSmith950 @Ardubal @Pampa @AlexisFR @Wirrvogel @Sodis IMHO reusing ex-EV batteries as grid storage may be more important in the medium term though.
@MattMastodon @BrianSmith950 @Ardubal @Pampa @AlexisFR @Wirrvogel @Sodis Also, smart tariffs for EV charging (dependent on when there is most renewable energy) already exist, at least two companies doing them. That's not V2G though.
@MattMastodon @BrianSmith950 @Ardubal @Pampa @AlexisFR @Wirrvogel @Sodis What would the cost be of fast bidirectional charging points for all those cars though? Both at office and at home? Do you need them to be fast charging, or is V2G at 7.5kW realistic/useful?
You'd be lucky to get 30%. IMHO the resource is somewhat limited depending on how much you put into charging infrastructure.