this post was submitted on 05 Dec 2023
33 points (100.0% liked)

Advent Of Code

763 readers
1 users here now

An unofficial home for the advent of code community on programming.dev!

Advent of Code is an annual Advent calendar of small programming puzzles for a variety of skill sets and skill levels that can be solved in any programming language you like.

AoC 2023

Solution Threads

M T W T F S S
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25

Rules/Guidelines

Relevant Communities

Relevant Links

Credits

Icon base by Lorc under CC BY 3.0 with modifications to add a gradient

console.log('Hello World')

founded 1 year ago
MODERATORS
 

Day 5: If You Give a Seed a Fertilizer


Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • Code block support is not fully rolled out yet but likely will be in the middle of the event. Try to share solutions as both code blocks and using something such as https://topaz.github.io/paste/ , pastebin, or github (code blocks to future proof it for when 0.19 comes out and since code blocks currently function in some apps and some instances as well if they are running a 0.19 beta)

FAQ


πŸ”’This post will be unlocked when there is a decent amount of submissions on the leaderboard to avoid cheating for top spots

πŸ”“ Unlocked after 27 mins (current record for time, hard one today)

you are viewing a single comment's thread
view the rest of the comments
[–] hades@lemm.ee 2 points 9 months ago

Python

Questions and feedback welcome!

import portion as P

from .solver import Solver

_maps = [
  'seed-to-soil',
  'soil-to-fertilizer',
  'fertilizer-to-water',
  'water-to-light',
  'light-to-temperature',
  'temperature-to-humidity',
  'humidity-to-location',
]

def group_lines_in_maps(lines):
  group = []
  for line in lines:
    if not line:
      yield group
      group = []
      continue
    group.append(line)
  yield group

class Day05(Solver):
  def __init__(self):
    super().__init__(5)
    self.seeds = []
    self.mappings = {}

  def presolve(self, input: str):
    lines = input.rstrip().split('\n')
    self.seeds = list(map(int, lines[0].split(' ')[1:]))
    self.mappings = {}
    for mapping in group_lines_in_maps(lines[2:]):
      mapping_name = mapping[0].split(' ')[0]
      mapping_ranges = map(lambda rng: tuple(map(int, rng.split(' '))), mapping[1:])
      self.mappings[mapping_name] = list(mapping_ranges)


  def solve_first_star(self):
    locations = []
    for seed in self.seeds:
      location = seed
      for mapping in map(self.mappings.get, _maps):
        assert mapping
        for dest, source, length in mapping:
          if 0 <= location - source < length:
            location = dest + (location - source)
            break
      locations.append(location)
    return min(locations)


  def solve_second_star(self):
    current_set = P.empty()
    for i in range(0, len(self.seeds), 2):
      current_set = current_set | P.closedopen(self.seeds[i], self.seeds[i] + self.seeds[i + 1])
    for mapping in map(self.mappings.get, _maps):
      assert mapping
      unmapped = current_set
      next_set = P.empty()
      for dest, source, length in mapping:
        delta = dest - source
        source_range = P.closedopen(source, source + length)
        mappable = unmapped & source_range
        mapped_to_destination = mappable.apply(
            lambda x: (x.left, x.lower + delta, x.upper + delta, x.right))  # pylint: disable=cell-var-from-loop
        next_set = next_set | mapped_to_destination
        unmapped = unmapped - source_range
      current_set = next_set | unmapped
    return next(P.iterate(current_set, step=1))