this post was submitted on 19 Oct 2023
5 points (85.7% liked)
Ask Electronics
3324 readers
1 users here now
For questions about component-level electronic circuits, tools and equipment.
Rules
1: Be nice.
2: Be on-topic (eg: Electronic, not electrical).
3: No commercial stuff, buying, selling or valuations.
4: Be safe.
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
I am assuming the LEDs are white (blue with yellow phosphor), which always have a roughly 3V voltage drop, this is just a physical fact. Some chips like those in LED bulbs have several LEDs in series for a voltage drop of 6/9/12/15/18 V but this is not the case here.
The vast majority of 5V strips have no step-down switching power supply (aka constant current buck converter) to reduce 5 V from the power rails to 3 V, instead just driving the LEDs with a resistor in series – it drops 2 V and if it’s a 100Ω resistor (usually labeled “101”), it lets 20 mA to the LED as per Ohm’s law. In practice, multiple LEDs are often in parallel to one resistor to save cost, in which case the current divides among them.
The strip may be RGB, in which case the LED voltages are 🔴1.8 V 🟢2.4-3.0 V 🔵3 V and pretty much the same applies. There may be an external controller but it usually just uses PWM to pulse the 5V rail of each color rather than adjusting the current. Individually cntrollable LED strips have a chip driving each LED, and there is just one power rail and serial data line between them.
By the way, the resistance of the strip’s power rails may be significant. If this is the case, do this: https://www.youtube.com/watch?v=wCsDZK0tJvU&t=393
Wow awesome, thank you for the info and resources! I have to follow the links later but I really appreciate the reply.
I don’t think OP’s strips have pixel control since in my experience you wouldn’t have a separate USB power line that bypasses the controller like OP is describing, but now am curious and hope they follow up.