this post was submitted on 28 Sep 2023
33 points (90.2% liked)

Technology

34928 readers
96 users here now

This is the official technology community of Lemmy.ml for all news related to creation and use of technology, and to facilitate civil, meaningful discussion around it.


Ask in DM before posting product reviews or ads. All such posts otherwise are subject to removal.


Rules:

1: All Lemmy rules apply

2: Do not post low effort posts

3: NEVER post naziped*gore stuff

4: Always post article URLs or their archived version URLs as sources, NOT screenshots. Help the blind users.

5: personal rants of Big Tech CEOs like Elon Musk are unwelcome (does not include posts about their companies affecting wide range of people)

6: no advertisement posts unless verified as legitimate and non-exploitative/non-consumerist

7: crypto related posts, unless essential, are disallowed

founded 5 years ago
MODERATORS
 

The vast majority of computer vision research leads to technology that surveils human beings, a new preprint study that analyzed more than 20,000 computer vision papers and 11,000 patents spanning three decades has found. Crucially, the study found that computer vision papers often refer to human beings as “objects,” a convention that both obfuscates how common surveillance of humans is in the field, and objectifies humans by definition.

you are viewing a single comment's thread
view the rest of the comments
[–] Apicnic@lemmy.blahaj.zone 2 points 1 year ago

This still just feels like a muddying of technical language. If you were to write an article about autopilot killing somebody and use object to refer to them, that's certainly dehumanization, but saying that an object detection algorithm performs poorly on humans doesn't feel like it is.

Part of the problem is that in general we aren't talking about specialized human detection models that incorporate things like pose estimation. Instead it is almost always a general object detection alg, and referring to the same models differently based on the subject just adds muddiness.

I'm mostly familiar with AI within healthcare, and in my workplace, any released model is going to have a number of conversations and evaluations about the technical performance, practical impact on patients, and general ethics of the model. Those conversations blend, but it's harmful to make the language less clear in any one of those contexts.