this post was submitted on 09 Jun 2025
492 points (96.8% liked)
Technology
71365 readers
3250 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related news or articles.
- Be excellent to each other!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, this includes using AI responses and summaries. To ask if your bot can be added please contact a mod.
- Check for duplicates before posting, duplicates may be removed
- Accounts 7 days and younger will have their posts automatically removed.
Approved Bots
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Interesting - I can sort of intuit why it might help. Feeding the model bad data and instructing training it to identify it as such would be advantageous compared to being entirely unaware of it.
Yeah, it's like me never having alcohol before and walking into a frat party as a freshman. Sometimes it's better to come prepared.
Can you define this? The authors/grifters call it "toxic data" but never define that either.
It's a pretty simple concept. Train any kind of model on only "good" data, and it fails to distinguish between that data and bad data.
Take image recognition. Feed it hundreds of images of an orange and ask it to find the orange. After training, it will be very good at finding that orange.
Then add a picture of a Pomeranian dog in there, and watch as the model confidently marks it as an orange.
The model should have been trained on lots of images that don't feature what you want it to output as well, so it knows to distinguish that.
I'm reminded of an early model that was trained to find if tanks were hiding pictures of forests / jungles. Was doing great with the training data then was given new images and seemed to be guessing wildly.
Turns out it in the training data all the pictures with tanks were taken on cloudy days.
There are a couple relatively safe places on 4 chan. But like 90% of the content makes for great "don't do this if you want to get along with humans" training.
And the goal of training an AI is that it does want to get along with humans.
This is obviously subjective depending on what you want to achieve with your llm, but "Bad" data in that it showcases the opposite of what is desirable output. Think bunk conspiracies, hostility, deception, racism, religious extremism etc.