this post was submitted on 15 Apr 2025
1472 points (95.8% liked)
memes
14333 readers
2857 users here now
Community rules
1. Be civil
No trolling, bigotry or other insulting / annoying behaviour
2. No politics
This is non-politics community. For political memes please go to !politicalmemes@lemmy.world
3. No recent reposts
Check for reposts when posting a meme, you can only repost after 1 month
4. No bots
No bots without the express approval of the mods or the admins
5. No Spam/Ads
No advertisements or spam. This is an instance rule and the only way to live.
A collection of some classic Lemmy memes for your enjoyment
Sister communities
- !tenforward@lemmy.world : Star Trek memes, chat and shitposts
- !lemmyshitpost@lemmy.world : Lemmy Shitposts, anything and everything goes.
- !linuxmemes@lemmy.world : Linux themed memes
- !comicstrips@lemmy.world : for those who love comic stories.
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Image recognition depends on the amount of resources you can offer for your system. There are traditional methods of feature extractions like edge detection, histogram of oriented gradients and viola-jones, but the best performers are all convolutional neural networks.
While the term can be up for debate, you cannot separate these cases and things like LLMs and image generators, they are the same field. Generative models try to capture the distribution of the data, whereas discriminitive models try to capture the distribution of labels given the data. Unlike traditional programming, you do not directly encode a sequence of steps that manipulate data into what you want as a result, but instead you try to recover the distributions based on the data you have, and then you use the model you have made in new situations.
And generative and discriminative/diagnostic paradigms are not mutually exclusive either, one is often used to improve the other.
I understand that people are angry with the aggressive marketing and find that LLMs and image generators do not remotely live up to the hype (I myself don't use them), but extending that feeling to the entire field to the point where people say that they "loathe machine learning" (which as a sentence makes as much sense as saying that you loathe the euclidean algorithm) is unjustified, just like limiting the term AI to a single digit use cases of an entire family of solutions.