this post was submitted on 16 Nov 2024
973 points (86.3% liked)

Science Memes

11525 readers
929 users here now

Welcome to c/science_memes @ Mander.xyz!

A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.



Rules

  1. Don't throw mud. Behave like an intellectual and remember the human.
  2. Keep it rooted (on topic).
  3. No spam.
  4. Infographics welcome, get schooled.

This is a science community. We use the Dawkins definition of meme.



Research Committee

Other Mander Communities

Science and Research

Biology and Life Sciences

Physical Sciences

Humanities and Social Sciences

Practical and Applied Sciences

Memes

Miscellaneous

founded 2 years ago
MODERATORS
 
you are viewing a single comment's thread
view the rest of the comments
[–] Ooops@feddit.org 2 points 1 month ago* (last edited 1 month ago)

130% production on average, with excess being stored, minus losses in conversions, transport and storage = 100% demand covered all the time.

Or the longer version: For a stable grid I need to cover 100% of the demand in next to real-time. This can be achieved with enough long- and short-term storage, plus some overproduction to account for storage losses. The 115% to 130% production (compared to actual demand) are based on studies for Germany and vary by scenario, with the higher number for the worst case (people strongly resisting all changes to better balance consumption and south Germany keeping up there resistence to diversify by only building solar while blocking wind power).

The question now is: How much storage do I need? And that answer is varying by much greater amount based on scenario (for example between 50 and 120 GW capacity needed as electrolysis for long term-storage or battery storage between 50GWh and 200GWh).